Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method
نویسندگان
چکیده
INTRODUCTION Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient's brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ± standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer's disease (AD) patients. METHODS Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55-90 years), we created: a mean ± SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. RESULTS The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25-45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. DISCUSSION To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease.
منابع مشابه
W3: Intra-Operative Imaging and Brain Pathology
The Intraoperative MRI is of great importance in the surgical removal of gliomas or cranial base tumors. However, the sole use of a intraoperative MRI is problematic, so that a dual system has been developed to optimize the utilization of the equipment, which can be used both for neurosurgical patients and for outpatient or stationary Patients. Within the framework of the new head Center at the...
متن کاملبررسی وجود انحراف طرفی ساقه غده هیپوفیز نرمال در افراد بالغ توسط MRI
Background & Aim: Magnetic resonance imaging(MRI) in the coronal plane before and after contrast is currently considered to be the most specific and sensitive technique for imaging pituitary gland. However, because of the false negative results of this method in the detection of pituitary microadenomas and the importance of finding these microadenomas, infundibular deviation or tilt in MRI ...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملAutomated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer's disease
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered ea...
متن کامل